CIMPA Research School : Data Science for Engineering and Technology Tunis 2019

Bregman divergences a basic tool for pseudo-metrics building for data structured by physics

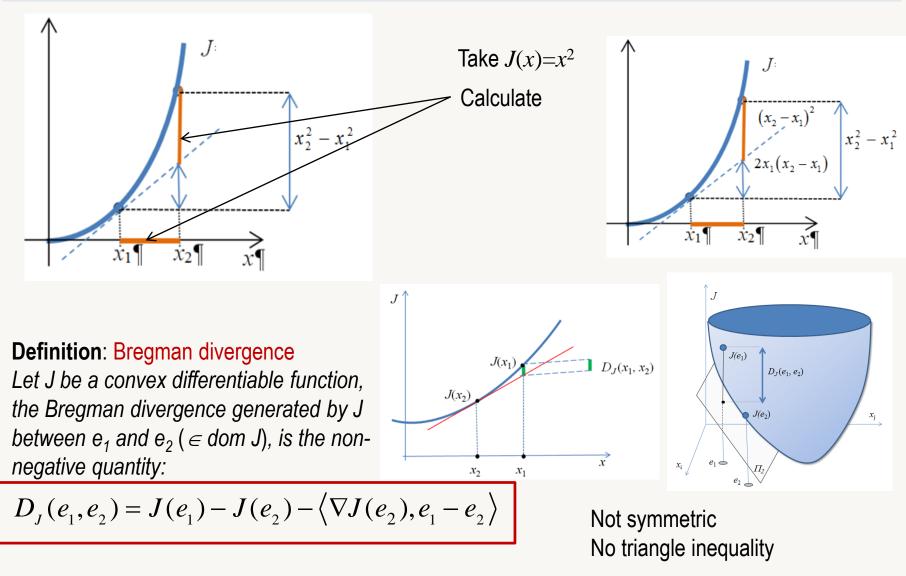
2- The Bregman divergence

Stéphane ANDRIEUX

ONERA - France

Member of the National Academy of Technologies of France

The basic idea



First properties of the Bregman divergence

Why is it a positive quantity?

By definition of convexity and differentiability, *J* lies above its tangents

$$J(y) \ge J(x) + \langle \nabla J(x), x - y \rangle$$

 $\partial J(e) = \left\{ p, J(d) \ge J(e) + \left\langle p, d - e \right\rangle \,\forall d \in dom(J) \right\}$ Definition of subdifferential

What if *J* is affine ?

What if $D_{I}(e_1,e_2) = 0$ and J strictly convex?

$$D_{ax+b}(e_1,e_2)=0$$

By contradiction, suppose $e_1 \neq e_2$, for any $0 < \lambda < 1$ $D_{I}(e,e_{2}) = D_{I}(\lambda e_{1} + (1-\lambda)e_{2},e_{2})$ $<\lambda D_{I}(e_{1},e_{2})+(1-\lambda)\bar{D}_{I}(e_{2},e_{2})=0$

Is $D_{I}(e_{1},e_{2})$ separately convex ?

 $D_{J}(x,.)$ is J(x)+ affine function, hence is convex $D_{I}(., x)$ is not always convex Counter example $J(x)=x^3$ on IR⁺

First properties of the Bregman divergence (cont.)

What if J is quadratic (in IR^{*n*}) with associated matrix A ?

What is $D_{\lambda J+\mu F}$? (*J*, *F*) convex functions (λ,μ) positive scalars

How is related D_J to $D_{\tilde{j}}$? $\tilde{J}(e) = J(e) - J(0) - \langle \nabla J(0), e \rangle$ What is $D_{\tilde{i}}(e, 0)$ $J(x) = x^{t}Ax \qquad \text{A symmetric positive} \\ DJ(x_{1}, x_{2}) = (x_{1} - x_{2})^{t}A(x_{1} - x_{2}) \\ \text{Mahalanobis distance} \end{cases}$

$$D_{\lambda J + \mu F}(e_1, e_2) = \lambda D_J(e_1, e_2) + \mu D_F(e_1, e_2)$$

 $D_{\tilde{j}} = D_{j}$ Generating function differing by an affine function

$$D_{\tilde{J}}(e,0) = \tilde{J}(e)$$

Examples of Bregman divergences

Domain	Generating function J(x)	Bregman divergence $D_J(x, y)$	Name
IR ⁿ	$ x ^2$	$\left\ x-y\right\ ^2$	Euclidian Distance
IR ⁿ	$J(x) = x^{T}Ax$ A symmetric positive	$(x-y)^{T} A(x-y)$	Mahalanobis distance
IR+*n	$\sum x_i \log x_i - x_i$	$\sum x_i \log \frac{x_i}{y_i} - x_i + y_i$	Kullback–Leibler divergence or Relative Entropy
IR+*n	$\sum -\log x_i$	$\sum \frac{x_i}{y_i} - \log \frac{x_i}{y_i} - 1$	<u>Itakura</u> -Saito discrete distance
[0,1]	$x\log x + (1-x)\log(1-x)$	$x \log \frac{x}{y} + (1-x) \log \frac{1-x}{1-y}$	Logistic loss
Used in learning (speech recognition, image classification, stochastic clustering,)			

Extensions of Bregman divergences

Non differentiable generating functions

When J is not differentiable at point e_2 , the definition would lead to a multivoque function, since the subdifferential of J in e_2 is not reduced to a singleton

Definition: Extended Bregman Divergences

Let J be a convex, not necessarily differentiable function, the extended Bregman divergences and generated by J between e_1 and e_2 (\in dom J), are the non-negative quantities:

$$D^{+}_{J}(e_{1},e_{2}) = \min_{\substack{p \in \partial J(e_{2})}} J(e_{1}) - J(e_{2}) - \langle p,e_{1} - e_{2} \rangle \equiv J(e_{1}) - J(e_{2}) - \langle \overline{p}_{2},e_{1} - e_{2} \rangle$$

$$D^{-}_{J}(e_{1},e_{2}) = \max_{\substack{p \in \partial J(e_{2})}} J(e_{1}) - J(e_{2}) - \langle p,e_{1} - e_{2} \rangle \equiv J(e_{1}) - J(e_{2}) - \langle \underline{p}_{2},e_{1} - e_{2} \rangle$$
with
$$\overline{p}_{2} = \arg_{p_{2}} \oplus \partial J(e_{2}) J(e_{1}) - J(e_{2}) - \langle p_{2},e_{1} - e_{2} \rangle = \arg_{p_{2}} \oplus \partial J(e_{2})$$

$$\underline{p}_{2} = \arg_{p_{2}} \oplus \partial J(e_{2}) J(e_{1}) - J(e_{2}) - \langle p_{2},e_{1} - e_{2} \rangle = \arg_{p_{2}} \oplus \partial J(e_{2})$$

$$\underline{p}_{2} = \arg_{p_{2}} \oplus \partial J(e_{2}) J(e_{1}) - J(e_{2}) - \langle p_{2},e_{1} - e_{2} \rangle = \arg_{p_{2}} \oplus \partial J(e_{2})$$
Extended for the set of the

Extended Bregman Divergences for $J(x) = \alpha x^2 + |x|$

The subdifferential is a closed convex set the minimum and maximum exist argmin and argmax belong to its boundary

$$0 \le D^+_J(e_1, e_2) \le D^-_J(e_1, e_2)$$

Bregman Divergences and Data Metrics

6

Symmetrized Bregman divergences (I)

Characterization of Symmetric Bregman Divergences

The Bregman Divergences are generally not symmetric

 $D_{J}(e_{1},e_{2}) = J(e_{1}) - J(e_{2}) - \left\langle \nabla J(e_{2}),e_{1} - e_{2} \right\rangle \neq D_{J}(e_{2},e_{1}) = J(e_{2}) - J(e_{1}) - \left\langle \nabla J(e_{1}),e_{2} - e_{1} \right\rangle$

Only Bregman Divergences generated by a quadratic function J are symmetric and they also enjoy the triangle inequality (sub-additivity). They reduce then to Mahalanobis distances

Property: Characterization of symmetrical Bregman divergences

Let J be a strictly convex function, third differentiable on IR^n , the Bregman divergence generated by J is symmetrical $D_J(e_1, e_2) = D_J(e_1, e_2)$, if and only if J is the sum of a quadratic Q(e) and a linear function L(e). Furthermore $D_J \equiv D_Q$, and D_Q satisfies the triangle inequality

Using
$$2(J(e_1) - J(e_2)) = \langle \nabla J(e_1) + \nabla J(e_2), e_1 - e_2 \rangle$$
 for any $e_1 = e$ and $e_2 = 0$ $2J(e) = \langle \nabla J(0) + \nabla J(e), e \rangle \forall e$
and $J(0) = 0$

Deriving $\nabla J(e) = \nabla J(0) + \langle \nabla \nabla J(e), e \rangle$

Replacing in to the symmetry condition $J(e) = \langle \nabla J(0), e \rangle + \frac{1}{2} \langle \nabla \nabla J(e).e, e \rangle \quad \forall e$

Deriving again $\langle \nabla \nabla \nabla J(e).e.e,e \rangle = 0 \ \forall e \Rightarrow J(e) = L(e) + Q(e), \ L(e) = \langle \nabla J(0),e \rangle, \ Q(e) = \frac{1}{2} \langle \nabla \nabla J(0).e,e \rangle$

Symmetrized Bregman divergences (II)

Two notions of Symmetrized Bregman Divergences

The more intuitive symmetrization is to define the symmetrized Bregman Divergences as

 $D_J^s(e_1, e_2) = D_J(e_1, e_2) + D_J(e_2, e_1)$

Definition: Symmetrized Bregman divergence Let *J* be a convex differentiable function, the symmetrized Bregman divergence generated by *J* between e_1 and e_2 (\in dom *J*), is the non-negative quantity:

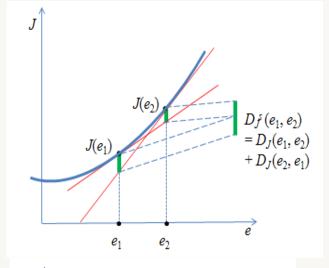
$$D_J^s(e_1,e_2) = \left\langle \nabla J(e_1) - \nabla J(e_2), e_1 - e_2 \right\rangle$$

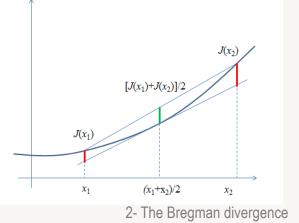
But other definitions exist

Definition: Jensen-Bregman divergence

The Jensen-Bregman divergence generated by the strictly convex function *J*, is:

$$JB_{J}(x, y) = D_{J}(x, \frac{x+y}{2}) + D_{J}(y, \frac{x+y}{2})$$
$$\frac{1}{2}JB_{J}(x, y) = \frac{J(x) + J(y)}{2} - J\left(\frac{x+y}{2}\right)$$





Symmetrized Bregman divergences (III)

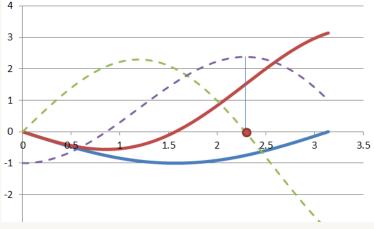
Natural notion of Symmetrized Bregman Divergences

Calculate the following symmetrized Bregman Divergences

Domain	Generating function J(x)	Name	Symmetrized Bregman Divergence $D^{s}{}_{J}(x, y)$
IR^{+*}	$\sum x_i \log x_i - x_i$	Symmetric Kullback–Leibler	$\sum (\log x_i - \log y_i, x_i - y_i)$
IR+*	$\sum -\log x_i$	Symmetric Itakura-Saito	$\sum \frac{\left(x_{i}-y_{i}\right)^{2}}{x_{i}y_{i}}$
[0,1]	$x\log x + (1-x)\log(1-x)$	Symmetric loss function	$(x-y)\log\frac{x(1-y)}{y(1-x)}$

But, the symmetrized Bregman divergence, as a function of (e_1, e_2) is generally **not** separately convex

C. Ex. $J(x) = -\sin x$ Convex on $[0, \pi]$ $D_J(x, 0) = \nabla J(x) \cdot x = -x \cos x$ Convex only on $[0, \beta \pi]$ with $2\sin \beta \pi + \beta \pi \cos \beta \pi = 0$



Bregman Divergences and Data Metrics

2- The Bregman divergence

Bregman Gaps

Divergences for pairs of dual variables

When manipulating data from physics, one can have to deal with data pairs constituted by <u>dual variables</u> (e,p), such that the duality product $\langle p, e \rangle$ is for example a work or a power.

Ex : Stress and strain Flux and Temperature

$$\begin{array}{cc} (\underline{\sigma},\underline{\varepsilon}) & \to \left\langle \underline{\sigma},\underline{\varepsilon} \right\rangle = \underline{\sigma} : \underline{\varepsilon} \\ (\underline{q},\underline{\nabla T}) & \to \left\langle (\underline{q},\underline{\nabla T}) \right\rangle = \underline{q}.\underline{\nabla T} \end{array}$$

Definition: Bregman gap

Let *J* be a convex, not necessarily differentiable function, the Bregman gap BG_J generated by *J* between e_1 and the pair of dual quantities (e_2, p_2) , $p_2 \in \partial J(e_2)$, is the non-negative quantity:

$$BG_{J}(e_{1}, [e_{2}, p_{2}]) = J(e_{1}) - J(e_{2}) - \langle p_{2}, e_{1} - e_{2} \rangle$$

Definition: Symmetrized Bregman gap

The Symmetrized Bregman gap generated by the convex function *J* between the two pairs of dual quantities (e_1, p_1) and (e_2, p_2) , is the nonnegative scalar :

$$BG_{J}^{s}([e_{1}, p_{1}], [e_{2}, p_{2}]) = BG_{J}(e_{1}, [e_{2}, p_{2}]) + BG_{J}(e_{2}, [e_{1}, p_{1}])$$

Properties of Bregman Gaps

1- Separate convexity of the symmetrized Bregman gap

 $\forall ([e_1, p_1], [e_2, p_2], [e_0, p_0]) \\ BG_J^s (\lambda[e_1, p_1] + (1 - \lambda)[e_2, p_2], [e_0, p_0]) \leq \lambda BG_J^s ([e_1, p_1], [e_0, p_0]) + (1 - \lambda)BG_J^s ([e_2, p_2], [e_0, p_0])??$

Consider the two functions of λ : $F(\lambda) = \langle \lambda e_1 + (1-\lambda)e_2 - e_0, \lambda p_1 + (1-\lambda)p_2 - p_0 \rangle$ $G(\lambda) = \lambda \langle e_1 - e_0, p_1 - p_0 \rangle + (1-\lambda) \langle e_2 - e_0, p_2 - p_0 \rangle$

Show that the function f(I)=F(I)-G(I) is negative along the segment [0,1] and notice that f(0)=0

The derivative of *f* is $f'(\lambda) = (2\lambda - 1)\langle e_1 - e_2, p_1 - p_2 \rangle = C(2\lambda - 1)$ $C \ge 0$ And *f* can be calculated as $f(\lambda) = C\lambda(\lambda - 1)\langle e_1 - e_2, p_1 - p_2 \rangle \le 0$ for $\lambda \in [0,1]$

2- If *J* is differentiable, symmetrized Bregman gap \equiv symmetrized Bregman divergence: $BG_J^s([e_1, \nabla J(e_1)], [e_2, \nabla J(e_2)]) \equiv D_J^s(e_1, e_2)$

3- Alternative form of BG_J^s $BG_J^s([e_1, p_1], [e_2, p_2]) = \langle p_1 - p_2, e_1 - e_2 \rangle$

4- If in addition J is quadratic then: $BG_J^s([e_1, p_1], [e_2, p_2]) = 2J(e_1 - e_2)$

Symmetrized Bregman divergences & Bregman Gaps

Non differentiable generating functions - Regularization

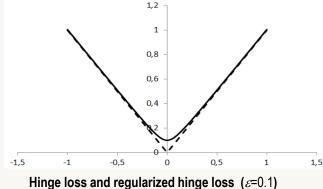
Consider the loss function used in robust statistic J(x) = |x| as the generating function (as is given rise to better robustness to outliers, *cf.* Linear Regression !)

Calculate the symmetrized Bregman divergence and the symmetrized Bregman gap generated

$$\begin{cases} BG_{\parallel}^{s}([x, sign(x)], [y, sign(y)]) = \begin{vmatrix} 2|x - y| & \text{if } sign(x) \neq sign(y) \\ 0 & \text{if } sign(x) = sign(y) & \text{if } |x||y| \neq 0 \\ \end{cases}$$

$$\begin{cases} BG_{\parallel}^{s}([x, sign(x)], [0, p]) = (sign(x) - p)x & p \in [-1, 1] \\ 0 & \text{if } sign(x) = sign(y) & \text{if } sign(x) \neq sign(y) \\ 0 & \text{if } sign(x) = sign(y) & \text{for } |x||y| \neq 0 \\ \end{cases}$$

What if one use the regularized version of the loss function $J_{\varepsilon}(x) = \sqrt{x^2 + \varepsilon^2}$, limit when $\varepsilon \to 0$?



$$D_{J_{\varepsilon}}^{s} = BG_{J_{\varepsilon}}^{s} = \left(\frac{x}{\sqrt{x^{2} + \varepsilon^{2}}} - \frac{y}{\sqrt{y^{2} + \varepsilon^{2}}}, x - y\right)$$
$$D_{J_{0}}^{s}(x, 0) = \frac{x^{2}}{\sqrt{x^{2}}} = sign(x)x \qquad (p_{\varepsilon}(0) = 0 \ \forall \varepsilon)$$

Bregman Divergences and Data Metrics

2- The Bregman divergence

Thanks for your attention

