
Bregman divergences 
a basic tool for pseudo-metrics building

for data structured by physics

Stéphane ANDRIEUX

ONERA - France

Member of the National Academy of Technologies of France

CIMPA Research School : Data Science for Engineering and Technology
Tunis 2019

2- The Bregman divergence



The basic idea
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Take J(x)=x2

Calculate

Definition: Bregman divergence

Let J be a convex differentiable function, 

the Bregman divergence generated by J 

between e1 and e2 ( dom J), is the non-

negative quantity:
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2- The Bregman divergence

Not symmetric

No triangle inequality



First properties of the Bregman divergence
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Why is it a positive quantity ?

What if J is affine ? 

Is DJ (e1,e2) separately convex ? 

By definition of convexity and differentiability , 

J lies above its tangents

( ) ( ) ( ),J J J x x yy x   

Definition of subdifferential  ( ) , ( ) ( ) , ( )J e p J d J e p d e d dom J      

Dax+b (e1,e2)=0

DJ (x,. ) is  J(x)+ affine function, hence is convex

DJ (., x) is not always convex 

Counter example  J(x)=x3 on IR+

What if DJ (e1,e2) =0  and 

J strictly convex? 

By contradiction, suppose , for any 0<l<11 2e e
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First properties of the Bregman divergence (cont.)

4 Bregman Divergences and  Data Metrics

What if J is quadratic (in IRn) 

with associated matrix A ? 
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What is DlJ+F ? 

(J, F) convex functions 

(l,) positive scalars
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Mahalanobis distance

A symmetric positive
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How is related       to        ? JD
J

D

What is ( ,0)
J

D e

JJ
D D Generating function differing 

by an affine function
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2- The Bregman divergence



Examples of Bregman divergences
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Used in learning (speech recognition, image 

classification, stochastic  clustering, …)

2- The Bregman divergence



Extensions of Bregman divergences
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Non differentiable generating functions  

When  J is not differentiable at point e2, the definition would lead to a multivoque

function, since the subdifferential of J in e2 is not reduced to a singleton

2
( )J x x x 

Extended Bregman Divergences 
for

Definition: Extended Bregman Divergences

Let J be a convex, not necessarily differentiable function, the extended Bregman divergences 

and generated by J between e1 and e2 ( dom J), are the non-negative quantities:
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The subdifferential is a closed convex set 
the minimum and maximum exist 
argmin and argmax belong to its boundary
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Symmetrized Bregman divergences (I)
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Characterization of Symmetric Bregman Divergences  

The Bregman Divergences are generally not symmetric
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Only Bregman Divergences generated by a quadratic function J are symmetric and they 

also enjoy the triangle inequality (sub-additivity). They reduce then to Mahalanobis distances

Property: Characterization of symmetrical Bregman divergences

Let J be a strictly convex function, third differentiable on IRn, the Bregman divergence generated by J 

is symmetrical DJ (e1, e2)= DJ (e1, e2), if and only if J is the sum of a quadratic Q(e) and a linear 

function L(e). Furthermore DJ  DQ, and DQ satisfies the triangle inequality 

 1 2 1 2 1 2
( ) ( ) ( ) ( ),2 J e J e J e J e e e     for any e1=e and e2=0 

and J(0)=0
Using

( ) (0) ( ),J e J J e e   

1
( ) (0), ( ). ,

2
J e J e J e e e e   Replacing in to the  symmetry condition 

Deriving again ( ). . , 0J e e e e e  

Deriving

( ) (0) ( ),2J e J J e e e   
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2
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Symmetrized Bregman divergences (II)
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Two notions of Symmetrized Bregman Divergences  

The more intuitive symmetrization is to define the symmetrized Bregman Divergences as

1 2 1 2 2 1( , ) ( , ) ( , )s
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Definition: Symmetrized Bregman divergence 

Let J be a convex differentiable function, the symmetrized 

Bregman divergence generated by J between e1 and e2

( dom J), is the non-negative quantity:
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2- The Bregman divergence

Definition: Jensen-Bregman divergence

The Jensen-Bregman divergence generated by the strictly 

convex function J, is:
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But other definitions exist



Symmetrized Bregman divergences (III)
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Natural notion of Symmetrized Bregman Divergences  

Calculate the following symmetrized Bregman Divergences

But, the symmetrized Bregman divergence, as a function 

of (e1,e2) is generally  not separately convex

( ) sinJ x x C. Ex. Convex on [0,p] 

( ,0) ( ). cosJD x J x x x x   

Convex only on [0,bp ] with

2sin cos 0bp bp bp 
2- The Bregman divergence



Bregman Gaps
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Divergences for pairs of dual variables  

When manipulating data from physics, one can have to deal with data pairs constituted by 

dual variables (e,p), such that the duality product           is for example a work or a power.

2- The Bregman divergence

,p e

Ex :  Stress and strain

Flux and Temperature 

( , ) , :      

( , ) ( , ) .q T q T q T    

Definition: Bregman gap

Let J be a convex, not necessarily differentiable function, the Bregman gap BGJ generated by 

J between e1 and the pair of dual quantities (e2, p2 ),                   , is the non-negative quantity:2 2
( )p J e

 1 2 2 1 2 2 1 2
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Definition: Symmetrized Bregman gap

The Symmetrized Bregman gap generated by the convex function J between the two pairs 

of dual quantities (e1, p1) and (e2, p2), , is the nonnegative scalar :
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Properties of Bregman Gaps
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1- Separate convexity of the symmetrized Bregman gap

Consider the two functions of l:
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Show that the function f(l)=F(l)-G(l) is negative along the segment [0,1] and notice that  f(0)=0

The derivative of f is

And f can be calculated as 

1 2 1 2
'( ) (2 1) , (2 1) 0f e e p p C Cl l l     
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2- If J is differentiable, symmetrized Bregman gap symmetrized Bregman divergence: 

3- Alternative form of 

4- If in addition J is quadratic then: 
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Symmetrized Bregman divergences & Bregman Gaps
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Non differentiable generating functions - Regularization

2- The Bregman divergence

Consider the loss function used in robust statistic                  as the generating function              
(as is given rise to better robustness to outliers, cf. Linear Regression !)

( )J x x

What if one use the regularized version of the loss function
2 2

( )J x x


 

Hinge loss and regularized hinge loss (=0.1) 

, limit when  →0 ?

Calculate the symmetrized Bregman divergence and the symmetrized Bregman gap generated 
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Thanks for your attention


